

Gasification of digestates and nutrient recycling

Prof. Dr. Thomas Kienberger

DI Mag. Kerstin Schopf

Trend of development of biogas plants in Germany

Introduction

Today in Germany:

around 75.000.000 t p.a. of biogas-digestates (10% dry-matter)

Potential?

■ Biogas-digestates: 7.5 Mtdry 15 $\frac{MJ}{ka} \approx 31$ TWh ←

At 8000 h of operation: • 3,9 GW for Biogas-digestates

EVT

Today's use of digestates?

- Mostly local use as ecological fertilizer
- But...

1. Local Oversupply

Transportation costs exceed fertilizer value if

distance is above 10km

Source: www.fnr.de

Introduction

2. Disposal bans

in overfertilized regions (NO₃⁻ - problem)

3. Poor conversion-efficiency of digestion-processes

incorporated by the soil?

- only around 50% of feed's calorific-value gets converted in digestion
- Most nutrients remain in the ash, also after subsequent thermal conversion
 But...Can they still be

Potential?

■ Biogas-digestates: 7.5 Mtdry-15 $\frac{MJ}{ka} \approx 31$ TWh <

At 8000 h of operation: • 3,9 GW for Biogas-digestates

ENERGIEVER

Fuel assessment

	Fuel preparation: for economic use drying and dewatering is necessary. Due to low-calorific-values: drying to 10% Water-content						
Gasification Nutrient recycling Summary Both digestates are mize-	Thickening •5-8% dry	g Drying •> 45% dry		hermal			
and grass-silage based	Water conter	nt Ash content	Calorific Val	ue			
	[9	6] [%]	[MJ/kg]				
		-	Gross	Net			
Biogas-digestat	e 1 Source: Kratzeisen 9.	2 18.3	17.3	15.8			
Biogas-digestat		9 14.6	16.4	15.0			
Pinewood (with	n bark) 12.	0 3.0	18.5	16.3			

- Energetic point of view (of dry digestates): Net Calorific values of biogas-digestates can be compared with wood.
- High ash-contents: Digestates require challenging ash-handling

Fuel assessment

Ash characteristics

		Temperature in °C	
	Softening	Hemisphere	Flow
Biogas-digestate 1	1.090	1.290	1.320
Biogas-digestate 2	1.110	1.150	1.390
Pinewood (with bark)	1.430	1.600	1.600
Thermal-Conversion-Requirement:			rce: Kratzeisen et al (2010)
Combustion- respectively Gasificati temperatures NOT higher than 100			
 Inhomogeneous fuels 	: Compositio	ons vary widely	16 17 18 19 20 21 22 5

Introduction Fuel Assessment Gasification Nutrient recycling Summary

Motivation for Gasification:

In comparison to combustion plants:

- Lower investment-costs
- Higher electrical efficiencies

Dried Biogas-digestates plant sizes

- some 100 kW for on-site gasification
- Low MW-range for plants with digestate-logistics

Gasification of digestates

Today, **No** "market-ready" systems exist All concepts are maximally in the stage of pre-commercialization

Major hurdle

 Reaching low tar-contents at the low gasification temperatures needed to avoid ash-slagging.

Also challenging

- Ash-stream handling...
- Gas-cleaning
- Corrosion related issues

Solution BFB-Gasification?

Optimal temperature-control possible, but..

Continuous backmix-reactor: Systematically high tar-contents between 1-10g/Nm³

Major hurdle

 Reaching low tar-contents at the low gasification temperatures needed to avoid ash-slagging.

Also challenging

- Ash-stream handling...
- Gas-cleaning
- Corrosion related issues

Solution Staged-Gasification?

Oxidation of low-temperature pyrolysis-products, Char-coal reduction below ash-

but...

Why not?

melting temperatures Challenging in terms of plant-design,

Major hurdle

Reaching low tar-contents at the low gasification temperatures needed to avoid ash-slagging.

Also challenging

- Ash-stream handling...
- Gas-cleaning
- Corrosion related issues

Syncraft → CraftWERK

- screw-pyrolysis \rightarrow pyrolysis gas oxidation \rightarrow char reduction in expanded bed reactor
- Fuel: pelletized biogas-digestates → 2014, positive tests, Craftwerk700 fits to 500 kW biogas-plant

Kopf SynGas-plant in Koblenz (D)

- New concept: screw-pyrolysis → pyrolysis gas oxidation → char reduction in ash-bed aim: Low-tar contents.
- 4000 t_{Dry} p.a. \rightarrow around 1 MW nominal fuel capacity \rightarrow around 350 kW_{el}
- Concept can be adaped for the use of biogas-digestates also

Nutritional requirements

Introduction	These basic nutrients are	\bigcap	BASIC NUTRIENTS
Fuel Assessment Gasification	generally available to plants in sufficient quantities simply through air, soil, & water	Ł	6 1 8 C H 0 CARBON HYDROGEN OXYGEN Color-Coding Key: Elemental Classifications
Nutrient recycling		\bigcap	PRIMARY MACRONUTRIENTS
Summary	Primary macronutrients (NPK's) are the primary foci of most traditional fertilizer application programs.	{	7 N 15 P 19 K Alkali Metals NITROGEN PHOSPHOROUS POTASSIUM Alkaline EARTH METALS
		\bigcap	SECONDARY MACRONUTRIENTS
	Secondary macronutrients and micronutrients are often grouped together for classification and identification. While they are not generally the foci of fertilization programs, they are absolutely essential for successful and healthy plant growth.		20 12 16 S CALCIUM MAGNESIUM 16 S MICRONUTRIENTS SULPHUR MICRONUTRIENTS 26 25 30 29 5 IRON MANGANESE ZINC COPPER BORON MOLYBDENUM BORON MOLYBDENUM CHLORINE
	While not widely considered to be		OTHERS
	essential components of plant nutrition, these elements are known to be required by certain plant types in certain environmental circumstances.	{	14 27 Co Source: sulvaris, 2016

Fuel assessment

4/h	Element	Unit	Biogas-	Biogas-	Pinewood
		Unit	digestate 1	digestate 2	(with bark)
Fuel Assessment	С	wt%	45.3	43.2	49.7
Gasification	N	wt%	2.9	1.5	0.13
Gasification	0	wt%	28.4	35.9	43.3
Nutrient recycling	<u>н</u>	wt%	5.2	5.5	6.3
Summary	Р	wt%	1.3	1.1	0.03
Summary	S	wt%	0.9	0.3	0.02
	К	wt%	1.4	1.6	0.1
	Cl	wt%	0.84	0.27	0.01
	As	mg/kg	0.93	0.54	0.48
	Cd	mg/kg	0.29	0.15	0.23
	Cr	mg/kg	13.2	21.5	6.8
	Cu	mg/kg	58.8	18.2	3.5
	Pb	mg/kg	4.4	0.78	2.17
	Hg	mg/kg	0.07	0.04	0.04
	Zn	mg/kg	304	125	35 _r

- Digestates show considerably higher amounts of nutrients in comparison to wood
- ...but also heavy-metals are higher

Ash as fertilizer: differences between gasification and combustion

Source: Pan &	1				
Eberhardt (2011)	Combustion	Gasification			
	g/kg	g/kg dry			
Са	130.65	75.57			
Mg	44.13	7.91			
К	129.47	20.33			
Р	11.76	2.44			
Mn	12.32	4.20			
В	0.71	0.14			

All wood-based data: poor data-base for digestate-ashes

Nutrient recycling

- Differences in elemental concentrations depend mostly on the process-temperature and the systematically high carbon content of gasification Bottom Ashes (ca. 50%)
- Lower P, Mg and K concentration the higher the process-temperatures are
- Both: no Nitrogen

Nutrient recycling

Ash as fertilizer: elutability of nutritions

Elutable content in w% with respect to the overall mass

- Generally: higher temperatures and pressures in the thermal process decrease short-time plant-availability
- P is very badly elutable
- Biomass-ashes are therefor considered as a long-time soil-conditioner

Ash as fertilizer: heavy metals

Introductior

Fuel Asses

Gasifica

Summa

Source: Eberharo

Nutrient re

rmont		Gasification	German fertilizer act	
sment		mg/kg dry		
tion	As	10.06	40	
cycling	Cd	4.39	Source: 4	
ary e: Pan & dt (2011)	Cr	38.51	Adam et	
	Cu	37.25	70	
	Ni	47.29	80	
	Pb	11.83	150	
	Zn	345.45	1,000	

- Generally: Fine fly-ashes (bag-filter, E-filter) contain high heavy-metal contents (Zn) and must be deposed.
- Coarse biomass-ash (Bottom-ash) normally is within the limits of national fertilizer acts. High heavy metal input due to local conditions must be taken into account.
- Caution: Plants with highly stressed stainless-steel components can emit ashes with to high concentrations of Ni and Cr.

Summary

Introduction	
Fuel Assessment	
Gasification	
Nutrient recycling	
Summary	

- For gasification of digestates , promising concepts, based on staged-gasification, exist. Major hurdle is the high ash-content and the low ash-softening temperature.
- Ashes from the thermal utilization of digestates can be used as fertilizer, but they can only be a part of a total nutrient management strategy

Pros

- Often high in P and K
- High Ca concentration possible
- Ash can improve the nutrient balance in soils

Cons

- No Nitrogen
- Only minor short-time plantavailability
- Heavy metal contents
- Gasification ash: Carbon and PAH

Thank you for your kind attention.